

Stand 08.2023

DOGM240-6 GRAPHIC

EA LED94X40-A

TECHNICAL DATA

- * CONTROLLER UC1611s WITH INTEGRATED GRAFIC-RAM
- * HIGH-CONTRAST LCD SUPERTWIST DISPLAY (STN AND FSTN) WITH 15µm DOT GAP
- * OPTIONAL LED BACKLIGHTS IN VARIOUS COLORS
- * 240x64 DOTS (CORRESPONDS TO 8x40 CHARS OR 4x20 LARGE CHARS)
- * POWER SUPPLY: SINGLE SUPPLY 2,7..3,3V (typ. 500 μA)
- * NO ADDITIONAL VOLTAGES REQUIRED
- * THREE DIFFERENT INTERFACES: 3-WIRE SPI, 4-WIRE SPI AND I²C
- * OPERATING TEMPERATURE RANGE -20..+70°C (STORAGE -30..+80°C)
- * LED BACKLIGHTING 10 to 150mA
- * NO MOUNTING REQUIRED: SIMPLY SOLDER ONTO PCB

ORDERING CODE

GRAPHICS DISPLAY, 240x64, 94x40 mm

- *x*: *W* = white background (FSTN pos. transflective)
 - **B** = blue background (STN neg. transmissive)
 - *S* = *black background (FSTN neg. transmissive)* N = superwhite background (FSTN pos. reflective, cannot be backlit)
- LED BACKLIGHT, WHITE
- LED BACKLIGHT. AMBER
- LED BACKLIGHT, DUO COLOR GREEN/RED
- LED BACKLIGHT, 3 COLORS GREEN/RED/WHITE

ACCESSORIES

USB TEST BOARD FOR PC (WINDOWS 2000, XP, VISTA) TOUCH PANEL, 4-WIRE, ANALOG, STICK-ON ZIF CONNECTOR FOR TOUCH PANEL, BOTTOM CONTACT 10 CHARACTER SETS e.g. 6x8,8x8,8x16,CYRILLIC, FONT EDITOR SOCKET 4.8mm HEIGHT (2 pcs. ARE NECCESSARY)

- EA DOGM240x-6
- EA LED94X40-W EA LED94X40-A EA LED94X40-GR EA LED94X40-ERW
- EA 9780-4USB EA TOUCH240-4 EA WF100-04S **EA USBSTICK-FONT** EA FL-20P

PINOUT

The EA DOGM240-6, a 240x64 dots graphics display, is a new addition to ELECTRONIC ASSEMBLY's EA DOG series. It, too, has pins that allow it to be mounted quickly and easily.

CONTRAST ADJUSTMENT

The contrast can be set by means of a command for all the displays in the EA DOGM- Series. The contrast setting of the display must be set once by the software, and is then kept constant throughout the entire operating temperature range (-20..+70°C), thanks to the integrated temperature compensation.

Pin	Symbol	Level	Function	Pin	Symbol	Level	Function
1	NC		(A1+: LED backlight)	21	VB0+	-	Voltage Converter
2	NC		(A2+: LED backlight)	22	VB1+	-	Voltage Converter
3	NC		(A3+: LED backlight)	23	VB1-	-	Voltage Converter
4				24	VB0-	-	Voltage Converter
5				25	VA0+	-	Voltage Converter
6				26	VA1+	-	Voltage Converter
7				27	VA1-	-	Voltage Converter
8				28	VA0-	-	Voltage Converter
9				29	VLCD	-	Power LC Drive
10				30	VDD	н	Power Supply +2,73,3V
11				31	VSS	L	
12				32	VSS	L	Power Supply 0V (GND)
13				33	BM0	H/L	Config Serial Interface
14				34	CD	H/L	L= Command, H= Data
15				35	CS1 (A3)	Н	Chip Select (high low)
16				36	CS0 (A2)	L	Chip Select (active low)
17				37	RST	L	Reset (active low)
18	NC		(C1-: LED backlight)	38	SCK (D0)	H/L	Serial Clock
19	NC		(C2-: LED backlight)	39	SDA (D3)	H/L	Serial Data
20	NC		(C3-: LED backlight)	40	D13	H/L	Config Serial Interface

CHARACTER SET AND FONT EDITOR (ACCESSORY)

With the ordering code EA USBSTICK-FONT a memory stick comes with various character sets, especially made for this display. An import function allows additionally to use Windows fonts. With the FontEditor it is easy to generate for example Cyrillic, Greek and Arabic fonts. The preview function shows immediately the size and style in simulation window.

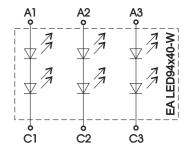
When the testboard EA 9780-4USB is connected to the USB port, you can see the character (or any predefined text) live on the display !

4 DIFFERENT TECHNOLOGIES

See below for an overview of available technologies STN and FSTN. See also an recommandation to combine with backlights and their usability:

Displaytyp	Technologie	optionale Beleuchtung	Lesbarkeit	Displayfarbe unbeleuchtet	Displayfarbe mit Beleuchtung	empfohlene Beleuchtung
CA DOGM240W-6	FSTN pos. transflektiv	mit und ohne Beleuchtungskörper zu verwenden	auch bei abgeschalteter Bel. lesbar	schwarz auf weiß	schwarz auf Beleuchtungsfarbe	alle
En DOGM240B-6	STN neg. blau transmissiv	nur beleuchtet zu verwenden			Beleuchtungsfarbe auf blauem Hintergrund	weiß, amber
ER DOGM2405-6	FSTN neg. transmissiv	nur beleuchtet zu verwenden			Beleuchtungsfarbe auf schwarzem Hintergrund	alle
CA DOGM240N-6 Minist Main File 237 Take off	FSTN pos. reflektiv	keine Beleuchtung möglich	ohne Beleuchtung bestens lesbar	schwarz auf weiß		

4 DIFFERENT BACKLIGHTS

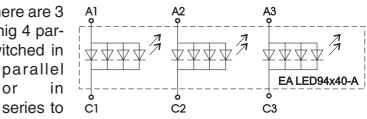

Four different backlight types are available to match equipments design as much as possible. Incl. 2and 3-color green/red. The most effective and brightest one is the white one EA LED94X40-W.

EA LED94X49-W	(white)) - the	super	bright	one

With the white backlight, there are 3 separate LED paths containig 2 LEDs in series each. We are using high-guality LEDs from NICHIA. To operate the backlight

with longest life time, we recommend a current source (e.g. CAT4238TD). Life time typ. 80,000 hours.

EA LED94x40


LED backlight	Forward voltage	Current	
(each path)	typ	max.	
white EA LED94x40-W	6.4 V	15 mA	

EA LED94X40-A (amber) - the cost effective one

or

With the amber backlight, there are 3 separate LED paths containig 4 parallel LEDs, that can be switched in

LED backlight	Forward voltage	Current	Limiting resistor (ohm)		
(each path)	typ	max	@3,3 V	@5 V	
amber EA LED94x40-A	2.1 V	80 mA	18	39	

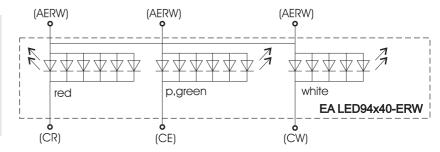
(CR)

suit the system's voltage. Life time typ. 100,000 hours.

000000000000000000000000	EA	LED94>	<u> </u>	(green/red) -	<u>for warnings</u>
				cklight has and two	(AGR) _
555 HHHHHHH 555				the red and	
	Forward		Limiting	/ or the	
LED backlight color	voltage	Current	resistor (ohm)	green	
	typ	max	@5 V	color. Life	(CG)
Green	2.1 V	120 mA	25	time typ.	(88)

25

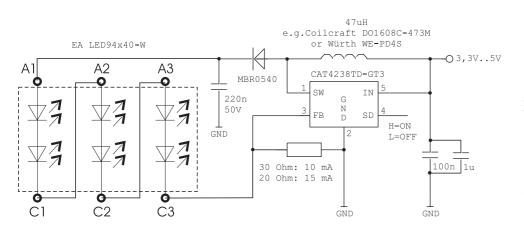
Red 2.1 V 120 mA


EA LED94X40-ERW (green/red/white) - the versatile

100,000 hours.

Bright white LEDs (brand: NICHIA) providing best readability under all conditions. The 3-color backlight has common anode (AERW) and three terminals for driving

the red, green and white LED path. Life time typ. 80,000 hours.


LED backlight	Forward voltage	Current	Limiting resistor (ohm)
	typ	max	@5V
Green	3.8V	90mA	15
Red	2.3V	90mA	30
White	3.3V	90mA	20

APPLICATION EXAMPLE LED DRIVER FOR 3.3V

Based on white backlight EA LED94x40-W with the help of current source CAT4238.

Important: Do never connect the backlight LEDs directly to a 5 V/3.3 V supply as this may immediately destroy the LEDs. Please note that derating applies at temperatures exceeding +25°C.

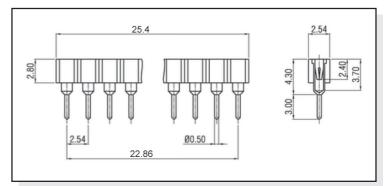
USB-TEST BOARD EA 9780-4USB

For easy startup, an USB test board is available that can be connected to a PC. It comes with an USB cable and a Windows software. This allows text and images (BMP) to be displayed directly on the pluggedin display. You will find more information on the test board in the EA 9780-4USB's data sheet.

File Dog Glass Led STN positive V/G ALT+E STN negative blue ALT+B FSTN positive ALT+W FSTN negative ALT+W FSTN negative ALT+C Set extern Contrast ALT+C Set extern Contrast ALT+C Set extern Contrast ALT+C STDP

- 🗆 🗵

DIG EA DOG160-7 simulat


SIMULATION WITH WINDOWS

A simulator window also displays the contents of the display. The software can simulate all the displays and colors even without the hardware. You can download the software for free from our website: <u>https://www.lcd-module.de/fileadmin/downloads/startdog_v46.zip</u>

SOCKET EA FL-20P

With the help of the single-row female connector stripe EA FL20-P the mounting of the display is detachable. In addition the overall height can be adjusted.

2 pieces are required each display!

DATA TRANSFER

The EA DOGM240-6 supports three serial modes. The data transfer of the two SPI-Modes is unidirectional, that means data can only be written, not read back. Compared to other displays, a busy query is not necessary. The clock-pulse rate of the CLK line can be up to 8MHz, depending on the supply voltage and interface mode.

More detailed information on timing can be found on page 64 to 66 of the data sheet of the UC1611s controller on our website at http://www.lcd-module.de/fileadmin/eng/pdf/zubehoer/uc1611s_v1_0.pdf

VDD o

30

33 BM0

40 D13

31 VSS

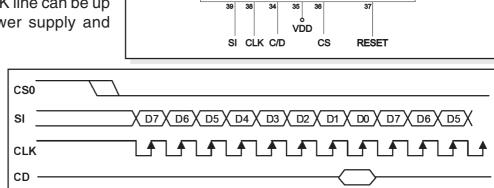
32 VSS

VDD (+2,7..3,3V)

4 wire

8-Bit SPI

EA DOGM240-6


CSI CSI CSI

4 WIRE, 8-BIT SPI-MODE

Falling edge on Pin CS0 (or rising edge on PIN CS1) is used for chip select and bus cycle reset. During each write cycle, 8 bits of data, MSB first, are latched on eight rising CLK edges into an 8-bit data holder.

If CD=0 (reading at D0), the byte will be decoded as command. If CD=1, this 8-bit will be treated as data byte.

The clock-pulse rate of the CLK line can be up to 8 MHz, depending on power supply and wiring.

30 VDD (+2,7..3,3V)

31 VSS

32 VSS

33 BM0

D13

40

VDD •

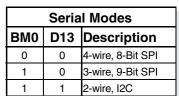
VDD

CK

ົ

8

3 WIRE, 9-BIT SPI-MODE


Falling edge on PIN CS0 (or rising edge on PIN CS1) is used for chip select and bus cycle reset. First of all the CD-Bit is transferred to select whether data (H) or command (L) is followed up within the next 8 bit (MSB first) The clock-pulse rate of the CLK line can be up to 8 MHz, depending on power supply and wiring.

SI CLK CS RESET

CLK

ົ

8

470n / 25\

VA0+

VA0-

VB0+

VB1+ 22

VB1-

VA1+ 26

21

VB0- 24

4 x 4.7uF/5V

VA1- 27

RST

10M

3 wire

9-Bit SPI

EA DOGM240-6

35

VDD VDD

470n / 25V

VA0+

VA0-

VA1+

VB0+ 21

VB0-

VB1

26

VA1- 27

24 羊

VB1+ 22

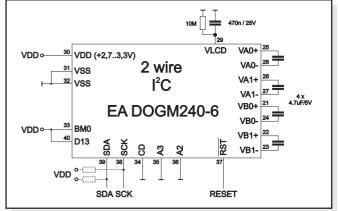
4 x 4.7uF/5V

T29 VLCD

RST

37

2 WIRE, I²C-MODE


Pin A2 and A3 is used to configure the device address. That means up to 4 displays can use the same I^2C bus.

The I²C mode has a bidirectional data transfer, i.e. data can be read back from the display's ram.

The clock-pulse rate of the CLK line can be up to 1.7 MHz, depending on power supply and wiring.

Please be informed, that the pins SDA+SCK contain an internal resistance of 600 to 1000 Ohm, or even more (Important, because of the LO-level while reading data and the ACK-Bit).

Important: After the commands to set page or column adress you always have to read a dummy byte.

A2=VSS / A3=VSS (like application example)				
Adr	Function			
\$70	Write Command			
\$71	Read Status			
\$72	Write Data			
\$73	Read Data			

Adr Function			
Write Command			
Read Status			
Write Data			
Read Data			

Write Mode MPU ↓	MPU ↑↓	MPU ↓ ît ↓	MPU ↓ ît	MPU ↑↓
S 0 1 1 1	A A C 0 A 7	D A 7	D A	A P
Read Mode MPU	MPU 介介	MPU ↑↓↑	MPU	MPU
© S 0 1 1 1	A A C 1 A D 3 2 D 1 A 7	D A D		N P

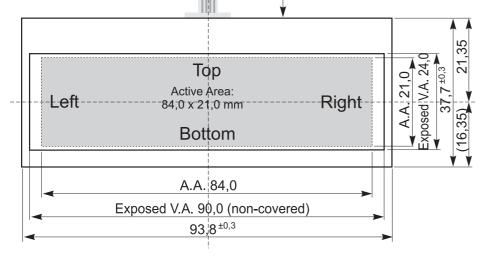
A2=	VDD / A3=VSS	A2=VSS / A3=VDD		
Adr	Function	Adr	Function	
\$74	Write Command	\$78	Write Command	
\$75	Read Status	\$79	Read Status	
\$76	Write Data	\$7A	Write Data	
\$77	Read Data	\$7B	Read Data	

TOUCH PANEL EA TOUCH240-4 (OPTIONAL)

An analog touch panel is available as an accessory. It has a selfadhesive material on its rear surface and is simply stuck onto the display. The connection is made by means of a 4-pin flexible cable for a ZIF connector (e.g. EA WF100-04S) with a grid of 1.0 mm. Bending radius is defined with min. 5mm. For optimum readability we recommend that you use a backlight with the display.

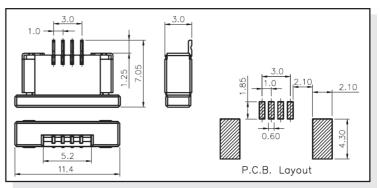
Interfacing to a processor can be either done by an external touch panel controller or with a controller that is featured with analogue inputs. The touch panel is similar to a potentiometer: connecting a

voltage of e.g. 3.3V to makes it possible to *Left* or *Right* which is lithe pressed point. The when the voltage will and measurement is The pinout of the


24,0

the pins *Top-Bottom* read out a voltage on pin near to the Y-coordinate of X-coordinate will result be supplied to *Left-Right* done at *Top* or *Bottom*.

Spe	Specification					
Specification	min	max	Unit			
Top-Bottom	100	180	Ω			
Left-Right	1300	2200	Ω			
Voltage	3	12	V			
Current	5	25	mA			
Linearity		3	%			
Force	90	120	g			
Contact Bounce	5	10	ms			
Op. Temperatur	-20	+60	°C			
Stor. Temperatur	-20	+70	°C			
Transmission	75	85	%			
Life Time	100000		Cycles			


Creation

connecting cable is shown in the drawing.

ZIF CONNECTOR EA WF100-04S

As an accessory for the touch panel we do provide a ZIF connector (4 pins) with pitch 1.0mm (SMD type). This connector is a "bottom side contact" type

TABLE OF COMMANDS (OVERVIEW)

					Comr	nand	Code)			Function	Default	
Command		CD	D7	D6	D5	D4	D3	D2	D1 D0			Delault	
(1)	Write Data Byte	1			da	ata bi	D[70]				Write one byte to memory	N/A	
(4)	Set Column Address LSB	0	0 0 0 0			0	CA[30]				Set the SRAM column address CA=0239	0x00	
	Set Column Address MSB		0	0	0	1		CA[74]			7	
(10)	Set Page Address LSB	0	0	1	1	0		PA[30]			Set the SRAM page address PA=015 in black and white mode	0x00	
. ,	Set Page Address MSB	0	0	1	1	1	0	P	A[64	4]		7	
(15)	Set RAM Address Control	0	1	0	0	0	1	AC[20]		0]	AC0: 0=stop increment at end ,1=warp around AC1: 0=column, 1=page increment AC2: Set page increment: 0= +1, 1= -1	0x01	
(31)	Set Window Start Column	0	1	1	1	1 WPC	0 0[70	1	0	0	Set Start Column of Window Function	0x00	
(2.2)	Set Window Start Page	0	1	1	1	1	0	1	0	1			
(32)			0	0			WPP	P0[50]			Set Start Page of Window Function	0x00	
(33)	Set Window End Column	0	1	1	1	1	0	1	1	0	Set End Column of Window Function	0xFF	
(00)			WPC1[70]										
(34)	Set Window End Page	0	1	1	1	1 0		1	1	1	Set End Page of Window Function	0x4F	
(* 1)			0	0 0 WPP1[50]				1[50]				
(35)	Set Window program mode	0	1	1	1	1	1	0	0	C4	C4: 0=inside 1=outside	0x00	

Further information, please download the datasheet of the controller UC1611s from our homepage: <u>http://www.lcd-module.de/fileadmin/eng/pdf/zubehoer/uc1611s_v1_0.pdf</u>

INITIALISACTION EXAMPLE (6:00 VIEW ANGLE)

	Initialisation example (bottom view)												
Command		CD	D7	D6	D5	D4	D3	D2	D1	D0	Hex	Remark	
[28]	Set COM End	0	1	1	1	1	0	0	0	1	\$F1	Set last COM electrode to 63 (number of COM electrodes - 1)	
			0	0	1	1	1	1	1	1	\$3F		
[29]	Set partitial display start	0	1	1	1	1	0	0	1	0	\$F2	Set Display start line to 0	
			0	0	0	0	0	0	0	0	\$00		
[30]	Set partitial display end	0	1	1	1	1	0	0	1	1	\$F3	Set Display end line to 63	
			0	0	1	1	1	1	1	1	\$3F		
[11]	Set Potentiometer	0	1	0	0	0	0	0	0	1	\$81	Set Contrast	
			1	0	1	1	0	1	1	1	\$B7		
[21]	Set LCD mapping control	0	1	1	0	0	0	0	0	0	\$C0	the - the second second	
			0	0	0	0	0	0	1	0	\$02	set bottom view	
[17]	Set line rate	0	1	0	1	0	0	0	1	1	\$A3	9.4 kilo-lines per second	
[27]	Set LCD bias ratio	0	1	1	1	0	1	0	0	1	\$E9	Set bias ratio to 10.	
[20]	Set display enable	0	1	0	1	0	1	0	0	1	\$A9	Enable display in black and white mode	
[23]	Set display pattern	0	1	1	0	1	0	0	0	1	\$D1		

GRAPHIC RAM

The EA DOGM240-6 has integrated a RAM to store 4 complete display contents. One byte contains 8 dots. The complete datasheet for the controller UC1611s can be downloaded on our homepage:

http://www.lcd-module.de/fileadmin/eng/pdf/zubehoer/uc1611s_v1_0.pdf

12:00 VIEW ANGLE, TOP VIEW

If the display is read mostly from above (on the front of a laboratory power supply unit e.g.), the preferred angle of viewing can be set to 12 o'clock. This rotaties the display by 180°. A slightly different initialization setup is required for this.

Initialisation example (changes for top view) D4 D3 Command CD D7 D6 D5 D2 D1 D0 Hex Remark 1 1 0 0 0 0 0 0 \$C0 Set LCD Mapping Control 0 [21] Set top view 0 0 0 0 0 1 0 0 \$04

EA DOGM240-6

6:00 o'clock (Bottom View)

Take off 🛒

240×64 dots SPI I2C 3.3U

12:00 o'clock (Top View)

Column address

Page 0

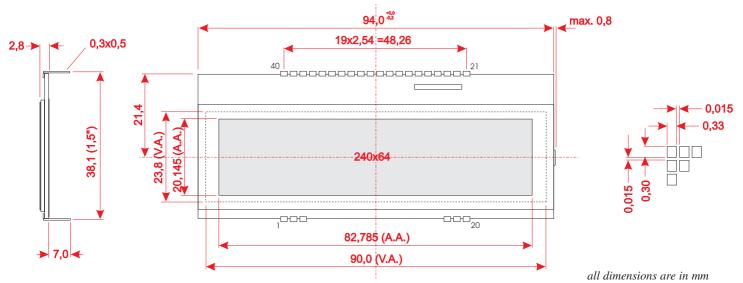
Page 1

Page 2

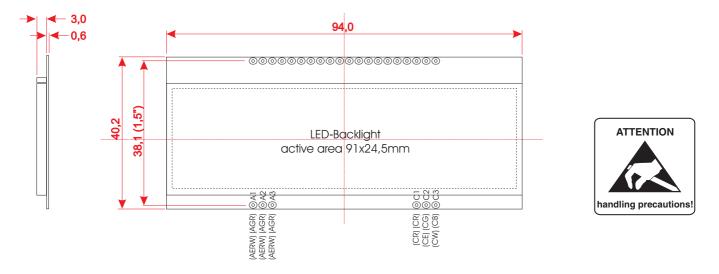
Page 5

Page 6

Page 7


0 - -D0

D7


D7 D0 2 D7

D0 ~ D7 --239

DIMENSIONS EA DOGM240-6

DIMENSIONS EA LED94X40

MOUNTING / ASSEMBLING

First, clip the display and backlight modules together by gently pushing the display pins through the corresponding holes on the backlight module. Then insert the entire module into the socket, or into the soldering holes on the pcb. The backlight pins (6 pins at the bottom) must be soldered on the top side as well to ensure good contact between the modules.

Important:

- The display and the backlight do have in summary 3 protective films. There are some on the top and the bottom of the display and also one on the backlight. These must be removed.
- LC displays are generally not suited for wave or reflow soldering. Temperatures of over 80°C can cause lasting damage.
- Make sure that either display nor backlight will never come into contact with any kind of liquid like Fluxer, Cleaner, Water.

DISPLAY VISIONS GmbH Zeppelinstraße 19 D-82205 Gilching Germany
 Fon:
 +49 (0)8105-778090

 Fax:
 +49 (0)8105-778099

 e-Mail:
 info@lcd-module.de

 Web:
 www.lcd-module.de

